Route Leaks: Status Update

Alexander Azimov, Qrator Labs
<aa@qrator.net>
Definition

Route Leaks are propagation of BGP prefixes which violate assumptions of BGP topology relationships; e.g. passing a route learned from one peer to another peer or to a transit provider, passing a route learned from one transit provider to another transit provider or to a peer.
Leaked Prefixes

If your prefixes are leaked:
1. Increased delays;
2. DoS;
3. MiTM attack.
Accepting Leaked Prefixes

If your AS accepts leaked prefixes:
1. Increased delays;
2. DoS;
3. MiTM attack.
Accepting Leaked Prefixes
Leakers

If your AS leaks prefixes:
1. DoS attack, was it your goal?
2. MiTM attack, was it your goal?
3. If not, money loss, packet loss, reputation loss.
Communities

Set communities depending on policy

Filter routes depending on set communities

No enforcement of policy existence and its correctness
Proactive Approach

Build filters using AS cone.

Can we fully rely on AS-SET?
Proactive Approach

Build filters using AS cone.

Can we fully rely on AS-SET?

What if leak happens inside AS cone?
Monitoring

• BGPStream + Caida AS Relations;
• DYN/Renesys;
• Radar by Qrator.
Preliminary Results

• Well managed communities will prevent you from leaking;
• Well defined policy can filter some leaks;
• Monitoring can assist you in tracking route leaks;

No opportunity to stop leak propagation in automated way
Peering Relations/Roles

Provider: sends their own routes and (possibly) a subset of routes learned from their other customers, peers, and transit providers to their customer.

Customer: accepts 'transit routes' from its provider(s) and announces their own routes and the routes they have learned from the transitive closure of their customers to their provider(s).

Peer: announces their routes and the routes from their customer cone to other Peers.

Internal: announces all routes, accepts all routes.
BGP Roles

3 pairs of non-conflict roles:
1. Peer <--- Peer
2. Customer <--- Provider
3. Internal <--- Internal
Considerations

• Roles are native;
• Roles are not revealing any sensitive data to other parties;
• Roles have a number of applications.
Route Leak Prevention: iOTC

If route was learned from a provider or peer it should not be announced to another provider or peer.

Set iOTC if role is customer or peer.

Filter routes if iOTC is set and role is customer or peer.

Internal Session
No iOTC change
Route Leak Detection: eOTC

If role is provider or peer and $\text{eOTC} = \text{AS1}$

If route was learned from a customer or peer and eOTC is set and $\text{eOTC} \neq \text{neighbor AS}$ then route was leaked.
What should we do with Route Leak?
What should we do with Route Leak?

• What if there is no alternatives?
• What if somebody violated eOTC value?

Deprioritization instead of filtering!
Implementation

protocol bgp IAMOPERATOR {
 local as MY_AS;
 neighbor X.X.X.X as AS_PROVIDER;
 role customer;
}

Github: https://github.com/QratorLabs/bird
No Fat Fingers Inside

Oh boy, I ate too much
IETF: Slow Motion

March 2016: OTC attribute and roles;
October 2016: OTC functionality split between eOTC and iOTC;
March 2017: clarification of peering relations, eOTC is moved to a separate draft.

Current version:
https://www.ietf.org/id/draft-ymbk-idr-bgp-open-policy-03
IETF: Slow Motion

Problem Definition and Classification

Alternative to eOTC

Change of BGP default behaviour
Results

• Well managed communities will prevent you from leaking;
• Well defined policy can filter some leaks;
• Monitoring can assist you in tracking route leaks;
• Roles + iOTC + eOTC can solve the general problem of route leaks that are result of mistake;
• Collaborate with IETF!!!
• Give us feedback: init.qrator.net/details/route-leak-mitigation