Addressing IPv6 A CDN perspective

Øjta joão taveira araújo

RIPE 74

Addressing IPv6 A CDN perspective

@jta joão taveira araújo

RIPE 74

Addressing IPv6 A CDN perspective

@jta joão taveira araújo

RIPE 74

your mileage may vary

breddit

@fastly

SFC LHR

808

Fate-sharing

Everything is fine

2013

anycast to support apex domains and in-house DNS

DNS offset Anycast IP address

Everything is fine

fate-sharing between address types 'Unicast has poor fallback properties 124 per POP will run out at some point anycast is hard to get right inbound path control is terrible overhead of running concurrent models

IP addressing

IP addressing

IP addressing

Everything is terrible

The good news

- no first-mover advantage at least two competitors already offered IPv6
- limited demand for IPv6 wasn't affecting our retention rate or growth
- no need to rush, so clean slate

more valued features: caching, purging, logging, stats, VCL already lost the very few customers who cared about IPv6

Everything is terrible

Decouple address types

Decouple address types

VIPs one-to-many r

Infrastructure one-to-one mapping to a physical endpoint

one-to-many mapping, service abstraction

Everything is terrible

Everything is terrible

outgrown IPv4 allocation scheme

anycast is hard to get right

inbound path control is terrible

overhead of running concurrent models

Backing anycast

Backing anycast

Backing anycast

outgrown IPv4 allocation scheme

anycast is hard to get right

inbound path control is terrible

overhead of running concurrent models

- inbound path control is terrible
- overhead of running concurrent models

fate-sharing between address types ' unicast has poor fallback properties Outgrown IPv4 allocation scheme anycast is hard to get right inbound path control is terrible overhead of running concurrent models

VIPs one-to-many

Infrastructure one-to-one mapping to a physical endpoint

one-to-many mapping, service abstraction

VIP allocation

Per provider planes

2016

VIP allocation

VIP allocation

Locator / Identifier

VIPs one-to-many

-								

Infrastructure one-to-one mapping to a physical endpoint

one-to-many mapping, service abstraction

Infrastructure allocation

Infrastructure allocation

number of announcements ~

l providers; l

number of announcements ~ $\sum_{i \in POP_S} |providers_i|$ each infrastructure prefix in a POP is a /40

number of announcements ~ $\sum_{i \in POP_S}$

each infrastructure prefix in a POP is a /40

fate-sharing between address types ' unicast has poor fallback properties Outgrown IPv4 allocation scheme anycast is hard to get right inbound path control is terrible overhead of running concurrent models

fate-sharing between address types ' unicast has poor fallback properties Outgrown IPv4 allocation scheme anycast is hard to get right inbound path control is terrible overhead of running concurrent models

Locator names

vip. ntt.vip. sjc.global.vip.

fra.inf. peering.fra.inf.

Locator names

vip. ntt.vip. sjc.global.vip.

fra.inf. peering.fra.inf.

Locator names

vip. ntt.vip. sjc.global.vip.

fra.inf. peering.fra.inf.

Anchoring IPv4

> bird-export.example if locator ~ "*cogent.vip" && provider != "cogent" then reject;

if locator ~ "*.cogent.vip" && provider == "cogent" then set_no_export()

Summary

✓ decoupled address types ✓ graceful fallback VIP prefix mobility fine-grained inbound path control ✓ unified model based on locator names takes a long time

Intellectual heritage

ILNP mobility, multi-homing, inbound TE

MP-TCP resource pooling

re-ECN information asymmetry in connectivity markets

WIP

ILNP locators expose path diversityMP-TCP pool path diversity at transport and abovere-ECN e2e metrics drive path selection

WIP

ILNP MP-TCP FU research from ~ 10 years ago re-ECN

Either the questions don't matter

ILNP mobility, multi-homing, inbound TE

MP-TCP resource pooling

re-ECN information asymmetry in connectivity markets

Either the ideas don't work

ILNP locators expose path diversity

MP-TCP paths exposed to transport/app

re-ECN e2e metrics drive path selection

Questions

RIPE 74

Øjta joão taveira araújo

